A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
نویسندگان
چکیده
To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents’ policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker.
منابع مشابه
A Bayesian Approach to Multiagent Reinforcement Learning
A Bayesian Approach to Multiagent Reinforcement Learning and Coalition Formation under Uncertainty Georgios Chalkiadakis Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2007 Sequential decision making under uncertainty is always a challenge for autonomous agents populating a multiagent environment, since their behaviour is inevitably influenced by the behaviou...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملMultiagent learning is not the answer. It is the question
The article by Shoham, Powers, and Grenager called “If multi-agent learning is the answer, what is the question?” does a great job of laying out the current state of the art and open issues at the intersection of game theory and artificial intelligence (AI). However, from the AI perspective, the term “multiagent learning” applies more broadly than can be usefully framed in game theoretic terms....
متن کاملMultiagent Learning with Bargaining - A Game Theoretic Approach
Learning in the real world occurs when an agent, which perceives its current state and takes actions, interacts with the environment, which in return provides a positive or negative feedback. The field of reinforcement learning studies such processes and attempts to find policies that map states of the world to the actions of agents in order to maximize cumulative reward over the long run. In m...
متن کاملStronger CDA strategies through empirical game-theoretic analysis and reinforcement learning
We present a general methodology to automate the search for equilibrium strategies in games derived from computational experimentation. Our approach interleaves empirical game-theoretic analysis with reinforcement learning. We apply this methodology to the classic Continuous Double Auction game, conducting the most comprehensive CDA strategic study published to date. Empirical game analysis con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017